

V-exact II

Thermostat-Ventilunterteile

Thermostat-Ventilunterteil mit stufenloser Präzisions-Voreinstellung

| Engineering **GREAT** Solutions

V-exact II

Die Thermostat-Ventilunterteile V-exact II werden in Zweirohr-Pumpenwarmwasser-Heizungsanlagen mit normaler bis höherer Temperaturspreizung eingesetzt. Die integrierte stufenlose Präzisions-Voreinstellung ermöglicht einen exakten hydraulischen Abgleich mit dem Ziel, alle Wärmeverbraucher entsprechend ihrem Wärmebedarf mit Heizwasser zu versorgen. Das Ventil verfügt über einen großen Durchflussbereich und zeichnet sich durch ein optimiertes Geräuschverhalten und geringste Durchflusstoleranzen aus.

Hauptmerkmale

- Optimiertes Geräuschverhalten Durch speziell gestaltete Regelkulisse
- > Großer Durchflussbereich Für vielfältige Anwendungen
- Doppelte O-Ring-Abdichtung Für langlebigen und wartungsfreien Betrieb
- Gehäuse aus Rotguss Korrosionsbeständig und sicher

Technische Beschreibung

Anwendungsbereich:

Heizungs- und Kühlanlagen.

Funktionen:

Regeln

Stufenlose Präzisions-Voreinstellung Absperren

Dimensionen:

DN 10 - 20

Nenndruck:

PN 10

Temperatur:

Max. Betriebstemperatur: 120 °C, mit Bauschutzkappe oder Stellantrieb 100 °C, mit Pressanschluss 110 °C. Min. Betriebstemperatur: –10 °C.

Werkstoffe:

Ventilgehäuse: korrosionsbeständiger

Rotguss
O-Ringe: EPDM
Ventilteller: EPDM
Druckfeder: Edelstahl

Thermostat-Oberteil: Messing, PPS.
Das komplette Thermostat-Oberteil kann
mit dem IMI Heimeier-Montagegerät ohne
Entleeren der Anlage ausgewechselt

Spindel: Niro-Stahlspindel mit doppelter O-Ring-Abdichtung. Der äußere O-Ring ist unter Druck auswechselbar.

Oberflächenbehandlung:

Ventilgehäuse und Anschlussverschraubung vernickelt.

Kennzeichnung:

THE, Ländercode,
Durchflussrichtungspfeil, DN und
KEYMARK-Kennzeichnung.
II + -Kennzeichnung.
Bauschutzkappe weiß.

Normen:

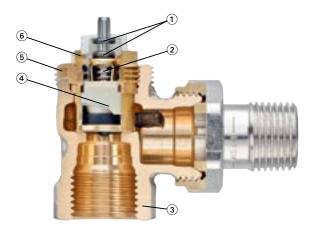
V-exact II Ventile entsprechen folgenden Anforderungen:

 KEYMARK-zertifiziert und geprüft nach DIN EN 215

 der "Hochgespreizten" Ausführung" und der "Normal-Ausführung" des Arbeitsblattes FW 507 der Arbeitsgemeinschaft Fernwärme (AGFW).

Rohranschluss:

Das Gehäuse mit Innengewinde ist ausgelegt für den Anschluss an Gewinderohr, oder in Verbindung mit Klemmverschraubungen an Kupfer-Präzisionsstahl- oder Verbundrohr (nur DN 15). Die Ausführung mit Außengewinde ermöglicht mit den entsprechenden Klemmverschraubungen zusätzlich den Anschluss von Kunststoffrohr. Ausführungen mit Viega Pressanschluss (15 mm) mit SC-Contur sind geeignet für Kupferrohr, Viega Sanpress-Edelstahlrohr und Prestabo-Stahlrohr.

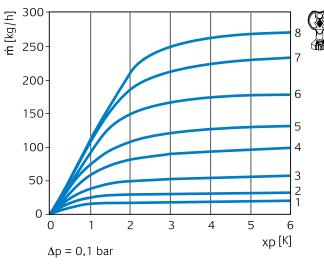

Anschluss für Thermostat-Köpfe und Stellantriebe:

IMI Heimeier M30x1,5

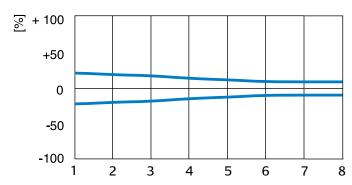
Aufbau

V-exact II

- 1. Langlebige doppelte O-Ring-Abdichtung
- 2. Die starke Rückstellfeder in Kombination mit hoher Stellkraft stellt sicher, dass das Ventil nach längerem Schließen nicht festsitzt
- 3. Gehäuse aus korrosionsbeständigem Rotguss
- 4. Regelkulisse für stufenlose Präzisions-Voreinstellung
- 5. Anschlusstechnologie M30x1,5 für IMI Heimeier Thermostat-Köpfe und IMI Heimeier und IMI TA Stellantriebe
- Oberteil ohne Entleeren der Anlage mit IMI Heimeier Montagegerät auswechselbar


Anwendung

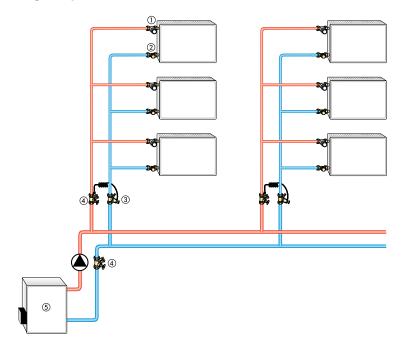
Die Thermostat-Ventilunterteile V-exact II werden in Zweirohr-Pumpenwarmwasser-Heizungsanlagen mit normaler bis höherer Temperaturspreizung sowie in Kühlanlagen eingesetzt. Das Ventil verfügt über einen großen Durchflussbereich und zeichnet sich durch ein optimiertes Geräuschverhalten und geringste Durchflusstoleranzen aus.


Aber nicht nur bei bestimmungsgemäßen Betrieb, sondern auch nach Raumtemperaturabsenkung oder Betriebspausen, sollte eine gleichmäßige Wasserverteilung vor allem in großen Anlagen erzielt werden, um eine Unter- bzw. Überversorgung in Teilbereichen der Anlage zu vermeiden. Dazu ist die Charakteristik des Ventils so ausgelegt, dass der Heizkörpermassenstrom selbst bei Voreinstellung 8 und voll geöffnetem Ventil den ca. 1,3-fachen Nenndurchfluss nicht überschreitet.

V-exact II Thermostat-Ventilunterteile können entspr. EnEV bzw. DIN V 4701-10 bis max. 1 K oder max. 2 K Regeldifferenz ausgelegt werden.

Optimierte Durchflussbegrenzung

Geringste Durchflusstoleranzen



Geräuschverhalten

Um einen geräuscharmen Betrieb gewährleisten zu können, sollten folgende Bedingungen erfüllt sein:

- Der Differenzdruck über Thermostatventilen sollte erfahrungsgemäß den Wert von ca. 20 kPa = 200 mbar = 0,2 bar nicht überschreiten. Ist bei der Planung einer Anlage zu erkennen, dass es im Teillastbereich zu höheren Differenzdrücken kommt, sind differenzdruckregelnde Einrichtungen wie z. B. Differenzdruckregler STAP oder Überströmventile Hydrolux einzusetzen (Geräuschkennlinie siehe Diagramm).
- Der Massenstrom muss korrekt einreguliert sein.
- Die Anlage muss vollständig entlüftet sein.

Anwendungsbeispiel

- 1. Thermostat-Ventilunterteil V-exact II
- 2. Rücklaufverschraubung Regulux/Regutec
- 3. STAP Differenzdruckregler
- 4. STAD Einregulierungsventil
- 5. Wärmeerzeuger

Hinweise

- Die Zusammensetzung des Wärmeträgermediums sollte zur Vermeidung von Schäden und Steinbildung in Warmwasserheizanlagen der VDI Richtlinie 2035 entsprechen.
 Für Industrie- und Fernwärmeanlagen ist das VdTÜV-Merkblatt 1466/AGFW-Arbeitsblatt FW 510 zu beachten. Im Wärmeträgermedium enthaltene Mineralöle bzw. mineralölhaltige Schmierstoffe jeder Art führen zu starken Quellerscheinungen und in den meisten Fällen zum Ausfall von EPDM-Dichtungen. Beim Einsatz von nitritfreien Frostund Korrosionsschutzmitteln auf der Basis von Ethylenglykol sind die entsprechenden Angaben, insbesondere über die Konzentration der einzelnen Zusätze, den Unterlagen des Frost- und Korrosionsschutzmittel-Herstellers zu entnehmen.
- Die Thermostat-Ventilunterteile passen zu IMI Heimeier Thermostat-Köpfen und IMI Heimeier oder IMI TA thermischen bzw. motorischen Stellantrieben. Die optimale Abstimmung der Komponenten untereinander gewährleistet ein Höchstmaß an Sicherheit. Bei Verwendung von Stellantrieben anderer Hersteller ist zu beachten, dass deren Stellkraft im Schließbereich auf Thermostat-Ventilunterteile mit weichdichtenden Ventiltellern angepasst ist.

Press-Line Anschluss mit Viega SC-Contur

Die Thermostat-Ventilunterteile mit 15 mm Viega Pressanschluss sind geeignet für Kupferrohr nach EN 1057, Viega Sanpress-Edelstahlrohr und Prestabo Stahlrohr. Alle Pressanschlüsse bestehen, wie auch die Armaturen-Gehäuse, aus korrosionsbeständigem entzinkungsfreiem Rotguss. Da es sich um den Viega Pressanschluss handelt können alle geeigneten Viega Pressbacken verwendet werden. Dadurch ist keine kostenintensive Neuanschaffung für Presswerkzeuge und Pressbacken erforderlich.

Die Verpressung bewirkt eine Sechskanteinprägung vor und hinter der Sicke des Verbinders, sie gibt der Verbindung die erforderliche Festigkeit. Synchron dazu wird die Pressfittingsicke gezielt so verformt, dass das hochwertige EPDM-Dichtelement eine definierte Verformung erhält.

Damit die Sicherheit nicht zu kurz kommt, sind die Pressanschlüsse mit der SC-Contur (SC = safety connection) ausgestattet, die beim Befüllen der Anlage nicht verpresste Verbindungen durch sichtbare Undichtheit im unverpressten Zustand erkennbar macht. Während der Verpressung wird die SC-Contur praktisch zurückgeformt und verliert damit ihre

Wirkung. Es entsteht eine dauerhaft dichte, unlösbare und kraftschlüssige Verbindung.

Verbindungen mit Pressfittings ohne SC-Contur können unverpresst zunächst dicht sein, später jedoch im Anlagenbetrieb auseinander gleiten.

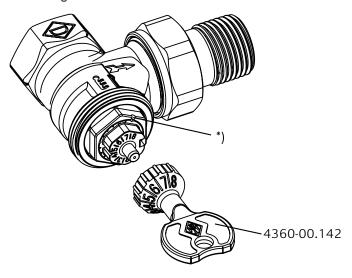
Besonders praxisgerecht ist auch der Sechskant an den Gehäusen, mit dem die Armaturen beim Anziehen der Überwurfmutter gegen gehalten werden können. Folgende Presswerkzeuge können verwendet werden z. B.:

- Viega: Typ 2, PT3-H, PT3-EH, PT3-AH, Akku-Presshandy, Pressgun 4E/4B
- Geberit: PWH 75
- Geberit /Novopress: Typ N 230V, Typ N Akku
- Mapress/Novopress: EFP 2, ACO 1/ ECO 1
- Klauke: UAP 2

Die Eignung nicht genannter Presswerkzeuge ist beim jeweiligen Hersteller zu erfragen.

Zur Herstellung von Viega-Pressverbindungen empfehlen wir ausschließlich Viega-Pressbacken zu verwenden.

Bedienung

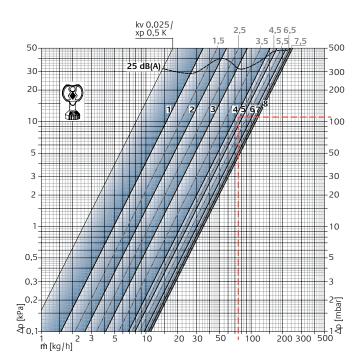

Voreinstellung

Die Voreinstellung kann zwischen 1 und 8 stufenlos gewählt werden. Zwischen den Voreinstellwerten befinden sich 7 zusätzliche Markierungen die ein genaues Einstellen ermöglichen. Die Einstellung 8 entspricht der Normaleinstellung (Werkseinstellung).

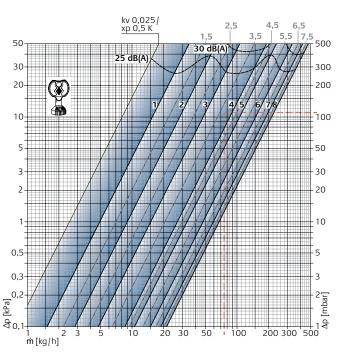
Mit dem Einstellschlüssel oder Maulschlüssel (13 mm) kann der Fachmann die Einstellung vornehmen oder verändern. Eine Manipulation per Hand durch Unbefugte ist ausgeschlossen.

- Einstellschlüssel auf Ventiloberteil aufsetzen und verdrehen, bis er einrastet.
- Index des gewünschten Einstellwertes auf die Richtmarkierung des Ventiloberteiles drehen.
- Schlüssel abziehen. Einstellwert kann am Ventiloberteil aus Betätigungsrichtung abgelesen werden (siehe Abb.).

Stirnseitige Ablesbarkeit



*) Richtmarkierung


Technische Daten

Diagramm, Ventilunterteil mit Thermostat-Kopf

Regeldifferenz [xp] 1,0 K

Regeldifferenz [xp] 2,0 K

	Ventilunterteil (DN 10/15/20) mit Thermostat-Kopf		Voreinstellung								Zulässiger Differenzdruck, bei dem das Ventil noch geschlossen wird Δp [bar]		
		1	2	3	4	5	6	7	8	ThKopf	EMO T-TM/NC EMOtec/NC EMO 1/3 EMO EIB/LON	EMO T/NO EMOtec/NO	
Regeldifferenz [xp] 1,0 K	Kv-Wert	0,049	0,082	0,130	0,215	0,246	0,303	0,335	0,343				
Regeldifferenz [xp] 2,0 K	Kv-Wert	0,049	0,090	0,150	0,265	0,330	0,470	0,590	0,670	1,0	3,5	3,5	
	Kvs-Wert	0,049	0,102	0,185	0,313	0,420	0,565	0,740	0,860	1,0	0,0	3,0	
Durchfluss- toleranz ± [%]		20	18	16	14	12	10	10	10				

 $Kv/Kvs = m^3/h$ bei einem Druckverlust von 1 bar.

Berechnungsbeispiel

Gesucht:

Einstellbereich

Gegeben:

Wärmestrom Q = 1308 W

Temperaturspreizung ΔT = 15 K (65/50 °C)

Druckverlust Thermostatventil ΔpV = 110 mbar

Lösung:

Massenstrom m = Q / (c · Δ T) = 1308 / (1,163 · 15) = 75 kg/h

Einstellbereich aus Diagramm:

Bei Regeldifferenz [xp] **max. 1,0 K**: 4,5 Bei Regeldifferenz [xp] **max. 2,0 K**: 4

Voreinstelltabelle

Voreinstellwerte bei unterschiedlicher Heizkörperleistung, Druckverlust und Systemspreizung

Q		200 250 300 400 500	600 700 800 900 000	200 400 600 800 000	200 400 600 800	3200 3400 3600 3800 4000	4800 5300 6500 6800 8400 9000
ΔT [K]	∆p[kPa]		1	1 1 2	2 2 2 3	wwww4	4 0 0 8 0 21
	5	2 3 3 4 4	45566	6 7 8			
10	10	2 2 2 3 3	44445	56677	8 8		
	15	2 2 2 3 3	3 4 4 4 4	55666	77788		
	5	2 2 2 3 3	44444	56667	7 7 8		
15	10	1 1 2 2 3	3 3 3 4 4	44556	66777	788	
	15	1 1 1 2 2	3 3 3 3 3	44455	56666	77778	
	5	1 1 2 2 3	3 3 4 4 4	45566	66777	8 8	
20	10	11122	2 3 3 3 3	44445	5 5 6 6 6	66777	8
	15	1112	2 2 3 3 3	3 4 4 4 4	45556	66666	7 8
	5	1 1 1	2 2 2 2 3	3 3 4 4 4	4 4 4 5 5	5 5 6 6 6	6 7 8 8
40	10	1 1	11222	2 3 3 3 3	44444	44455	5 6 6 6 7 7
	15	1	11122	2 2 2 3 3	3 3 3 4 4	44444	5 5 6 6 6 7 8

10 kPa = 100 mbar = 1 mWS

Voreinstellwerte bei max. 2 K Regeldifferenz.

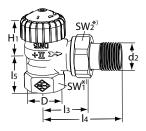
Q = Heizkörperleistung

 $\Delta T = Systemspreizung$

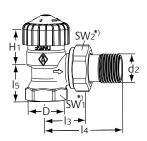
 $\Delta p = Differenzdruck$

Beispiel:

 $Q = 1000 \text{ W}, \Delta T = 15 \text{ K}, \Delta p = 10 \text{ kPa}$


Voreinstellwert: 4

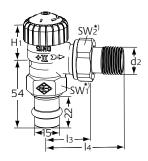
Hinweis:


Für die überschlägige Ermittlung der Voreinstellung bei vorgegebener Heizkörperleistung und Systemspreizung, wird ein mittlerer Differenzdruck von 10 kPa empfohlen.
Bei Anlagen mit großer horizontaler Ausdehnung ist eine Differenzierung des Druckverlustes notwendig:
z. B. 15 kPa für Ventile in der Nähe der Zentrale, 10 kPa im mittleren Bereich und 5 kPa für Ventile an entfernt liegenden Heizkörpern.

Eine genaue Ermittlung kann nur im Rahmen der Rohrnetzberechnung anhand des Diagramms bzw. mit einem Berechnungsprogramm durchgeführt werden.

Artikel

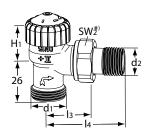
Eck										
DN	D	d2	13	14	15	H1	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
10	Rp3/8	R3/8	26	52	23,5	23,5	0,025 - 0,670	0,86	4024052838318	3711-01.000
15	Rp1/2	R1/2	29	58	27	23,5	0,025 – 0,670	0,86	4024052838417	3711-02.000
20	Rp3/4	R3/4	34	66	29	21,5	0,025 – 0,670	0,86	4024052838516	3711-03.000



Eck

mit verkürzten Baumaßen.

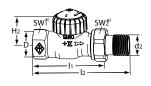
Messing. Nicht geeignet für Klemmverschraubungen für Verbundrohr.


DN	D	d2	13	14	15	H1	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
10	Rp3/8	R3/8	24	49	20	24	0,025 - 0,670	0,86	4024052839612	3715-01.000
15	Rp1/2	R1/2	26	53	23	23,5	0,025 - 0,670	0,86	4024052839711	3715-02.000
20	Rp3/4	R3/4	30	63	26	21,5	0,025 - 0,670	0,86		3715-03.000

Eck

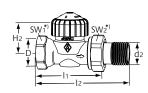
mit Viega Pressanschluss 15 mm

DN	d2	13	14	H1	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	R1/2	29	58	23,5	0,025 - 0,670	0,86	4024052840014	3717-15.000



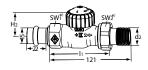
Eck

mit Außengewinde G 3/4


DN	d1	d2	13	14	H1	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	G3/4	R1/2	29	58	21,5	0,025 - 0,670	0,86	4024052840212	3719-02.000

Durchgang

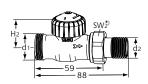
DN	D	d2	l1	12	H2	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
10	Rp3/8	R3/8	59	85	21,5	0,025 – 0,670	0,86	4024052838615	3712-01.000
15	Rp1/2	R1/2	66	95	21,5	0,025 – 0,670	0,86	4024052838714	3712-02.000
20	Rp3/4	R3/4	74	106	23,5	0,025 – 0,670	0,86	4024052838912	3712-03.000



Durchgang

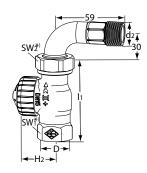
mit verkürzten Baumaßen.

Messing. Nicht geeignet für Klemmverschraubungen für Verbundrohr.


DN	D	d2	l1	12	H2	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
10	Rp3/8	R3/8	50	76	22,5	0,025 - 0,670	0,86	4024052839810	3716-01.000
15	Rp1/2	R1/2	55	83	22,5	0,025 - 0,670	0,86	4024052839919	3716-02.000
20	Rp3/4	R3/4	65	97	22,5	0,025 - 0,670	0,86		3716-03.000

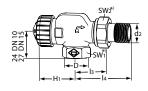
Durchgang

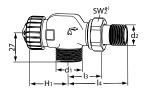
mit Viega Pressanschluss 15 mm


DN	d2	l1	H2	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	R1/2	66	21,5	0,025 - 0,670	0,86	4024052840113	3718-15.000

Durchgang

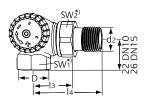
mit Außengewinde G 3/4


DN	d1	d2	H2	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	G3/4	R1/2	21,5	0,025 - 0,670	0,86	4024052840311	3720-02.000


Durchgang

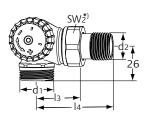
mit Bogenverschraubung

DN	D	d2	l1	H2	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	Rp1/2	R1/2	66	21,5	0,025 - 0,670	0,86	4024052840717	3756-02.000


Axial													
DN	D	d2	13	14	H1	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.				
10	Rp3/8	R3/8	26	52	31,5	0,025 - 0,670	0,86	4024052838011	3710-01.000				
15	Bn1/2	R1/2	29	58	31.5	0.025 - 0.670	0.86	4024052838110	3710-02.000				

Axial

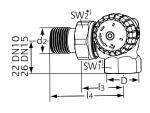
mit Außengewinde G 3/4


DN	d1	d2	13	14	H1	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	G3/4	R1/2	29	58	31,5	0,025 - 0,670	0,86	4024052840410	3730-02.000

Winkeleck

Anschluss am Heizkörper links

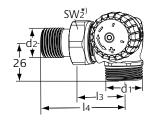
DN	D	d2	13	14	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
10	Rp3/8	R3/8	26	52	0,025 – 0,670	0,86	4024052839018	3713-01.000
15	Rp1/2	R1/2	29	58	0,025 – 0,670	0,86	4024052839117	3713-02.000



Winkeleck

mit Außengew. G 3/4 Anschluss am Heizkörper links

DN	d1	d2	13	14	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	G3/4	R1/2	29	58	0,025 - 0,670	0,86	4024052840519	3733-02.000



Winkeleck

Anschluss am Heizkörper rechts

DN	D	d2	13	14	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
10	Rp3/8	R3/8	26	52	0,025 - 0,670	0,86	4024052839315	3714-01.000
15	Rp1/2	R1/2	29	58	0,025 - 0,670	0,86	4024052839414	3714-02.000

Winkeleck

mit Außengew. G 3/4 Anschluss am Heizkörper rechts

DN	d1	d2	13	14	Kv [xp] max. 2 K	Kvs	EAN	Artikel-Nr.
15	G3/4	R1/2	29	58	0,025 - 0,670	0,86	4024052840618	3734-02.000

*) SW1: DN 10 = 22 mm, DN 15 = 27 mm, DN 20 = 32 mm SW2: DN 10 = 27 mm, DN 15 = 30 mm, DN 20 = 37 mm

Maße H1 und H2 bei Auflagefläche Thermostat-Kopf oder Stellantrieb.

 $Kvs = m^3/h$ bei einem Druckverlust von 1 bar und voll geöffnetem Ventil.

Kv [xp] max. 2 K = m^3/h bei einem Druckverlust von 1 bar mit Thermostat-Kopf.

Zubehör

Einstellschlüssel

für V-exact II ab 2012.

	EAN	Artikel-Nr.
4024052532216 4360-00.142	4024052532216	4360-00.142

Klemmverschraubung

für Kupfer- oder Präzisionsstahlrohr nach DIN EN 1057/10305-1/2.

Anschluss Innengewinde Rp 3/8 – Rp 3/4. Metallisch dichtend. Messing vernickelt. Bei einer Rohrwanddicke von 0,8 – 1 mm sind Stützhülsen einzusetzen.

Angaben der Rohrhersteller beachten.

Ø Rohr	DN	EAN	Artikel-Nr.
12	10 (3/8")	4024052174614	2201-12.351
15	15 (1/2")	4024052175017	2201-15.351
16	15 (1/2")	4024052175116	2201-16.351
18	20 (3/4")	4024052175215	2201-18.351

Stützhülse

für Kupfer- oder Präzisionsstahlrohr mit einer Wandstärke von 1 mm. Messing.

Ø Rohr	L	EAN	Artikel-Nr.	
12	25,0	4024052127016	1300-12.170	
15	26,0	4024052127917	1300-15.170	
16	26,3	4024052128419	1300-16.170	
18	26,8	4024052128815	1300-18.170	

Klemmverschraubung

für Alu/PEX Verbundrohr nach DIN 16836. Anschluss Innengewinde Rp 1/2. Messing vernickelt.

Ø Rohr	EAN	Artikel-Nr.
16 x 2	4024052138616	1335-16.351

Anschlussverschraubung

Zum Klemmen von Kunststoff-, Kupfer-, Präzisionsstahl- oder Verbundrohr. Messing vernickelt.

	L	EAN	Artikel-Nr.
G3/4 x R1/2	26	4024052308415	1321-12.083

Klemmverschraubung

für Kupfer- oder Präzisionsstahlrohr nach DIN EN 1057/10305-1/2. Anschluss Außengewinde G 3/4 nach DIN EN 16313 (Eurokonus). Messing vernickelt. Metallisch dichtend. Bei einer Rohrwanddicke von 0,8–1 mm sind Stützhülsen einzusetzen. Angaben der Rohrhersteller beachten.

Ø Rohr	EAN	Artikel-Nr.
12	4024052214211	3831-12.351
15	4024052214617	3831-15.351
16	4024052214914	3831-16.351
18	4024052215218	3831-18.351

Klemmverschraubung

für Kupfer- oder Präzisionsstahlrohr nach DIN EN 1057/10305-1/2. Anschluss Außengewinde G 3/4 nach DIN EN 16313 (Eurokonus). Weich dichtend, max. 95 °C. Messing vernickelt.

Ø Rohr	EAN	Artikel-Nr.
15	4024052515851	1313-15.351
18	4024052516056	1313-18.351

Klemmverschraubung

für Kunststoffrohr nach DIN 4726, ISO 10508. PE-X: DIN 16892/16893, EN ISO 15875; PB: DIN 16968/16969. Anschluss Außengewinde G 3/4 nach DIN EN 16313 (Eurokonus). Messing vernickelt.

Ø Rohr	EAN	Artikel-Nr.
14x2	4024052134618	1311-14.351
16x2	4024052134816	1311-16.351
17x2	4024052134915	1311-17.351
18x2	4024052135110	1311-18.351
20x2	4024052135318	1311-20.351

Klemmverschraubung

für Alu/PEX Verbundrohr nach DIN 16836. Anschluss Außengewinde G 3/4 nach DIN EN 16313 (Eurokonus). Messing vernickelt.

Ø Rohr	Artikel-Nr.
16x2	1331-16.351

Montagegerät

kompl. mit Koffer, Steckschlüssel und Ersatzdichtungen, zum Auswechseln von Thermostat-Oberteilen ohne Entleeren der Heizungsanlage (für DN 10 bis DN 20).

	EAN	Artikel-Nr.
Montagegerät	4024052298914	9721-00.000
Ersatzdichtungen	4024052299010	9721-00.514

Weiteres Zubehör siehe Prospekt "Zubehör und Ersatzteile für Thermostat-Ventilunterteile".

