PRODUITS POUR COMBUSTIBLES SOLIDES

UNITÉ DE CHARGE SÉRIE LTC300

L'unité de charge ESBE de la série LTC300 est utilisée pour charger automatiquement et efficacement les ballons de stockage. Elle est conçue pour protéger les chaudières à combustibles solides jusqu'à 100 kW contre des températures de retour trop basses, afin de réduire la formation de goudron, optimiser les performances et augmenter la durée de vie de la chaudière. L'unité de charge a été conçue conformément à la directive européenne 2009/125/CE concernant l'écoconception des produits liés à l'énergie.

e pour s dron, F

Filetage intérieur

UTILISATION

L'unité de charge ESBE de la série LTC300 est conçue pour protéger la chaudière contre des températures de retour trop basses. Le maintien d'une température de retour élevée et stable contribue à de meilleures performances de la chaudière, à réduire la formation de goudron et à augmenter la durée de vie de la chaudière.

La série LTC300 est utilisée dans des applications de chauffage où des chaudières à combustibles solides sont utilisées pour alimenter les ballons de stockage.

FONCTION

L'unité de charge, composée d'une vanne thermique et d'une pompe intégrée, est conçue pour faciliter à la fois le montage et son utilisation.

La vitesse de la pompe est réglable, ce qui permet d'ajuster correctement la vitesse de la pompe pour le système et d'optimiser le chargement du réservoir de stockage.

L'unité de charge est protégée par une coque d'isolation et est munie de thermomètres facilement lisibles.

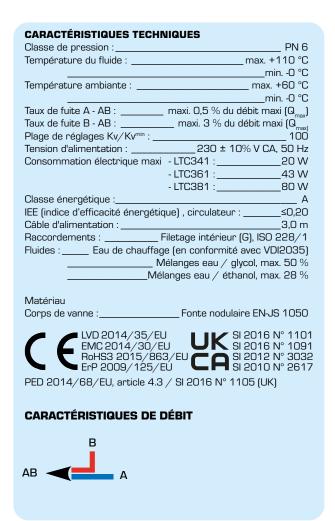
La régulation s'effectue sur deux ports, ce qui facilite l'installation et ne requiert aucune vanne d'équilibrage dans le conduit de dérivation.

La série LTC300 a une fonction de circulation automatique intégrée qui rend l'unité opérationnelle même en cas de coupure de courant ou de panne de la pompe. La fonction de circulation est désactivée lors de la livraison, mais peut facilement être activée si nécessaire.

Une fonction de purge intégrée est incluse dans le LTC300. En alternant pendant 10 minutes les vitesses lentes et rapides de la pompe, l'air résiduel sera évacué de l'unité de charge et pourra être purgé hors du système. A la fin de cette procédure, la pompe retourne automatiquement à la vitesse prédéfinie.

La vanne inclut un thermostat qui commence à ouvrir le raccordement A lorsque la température de l'eau sortante dans le raccordement AB est en-deçà du seuil inférieur de la plage de régulation. Le raccordement B est complètement fermé lorsque la température dans le raccordement A dépasse la température nominale de 5 °C.

MONTAGE

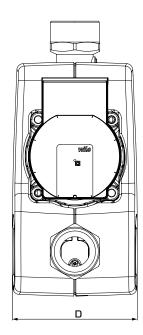

La pompe est équipée d'un câble d'alimentation de 3 mètres.

FLUIDE

Un maximum de 50 % d'additif de glycol est autorisé pour la protection antigel et les absorbeurs d'oxygène. Comme la viscosité et la conduction thermique sont affectées en ajoutant du glycol dans le circuit d'eau, ce critère doit être pris en considération lors du calcul du dimensionnement de l'unité.

UNITÉ DE CHARGE LTC300 CONÇUE POUR


Chauffage



UNITÉ DE CHARGE

SÉRIE LTC300

SÉRIE LTC341 Filetage intérieur avec pompe électronique de 4 m

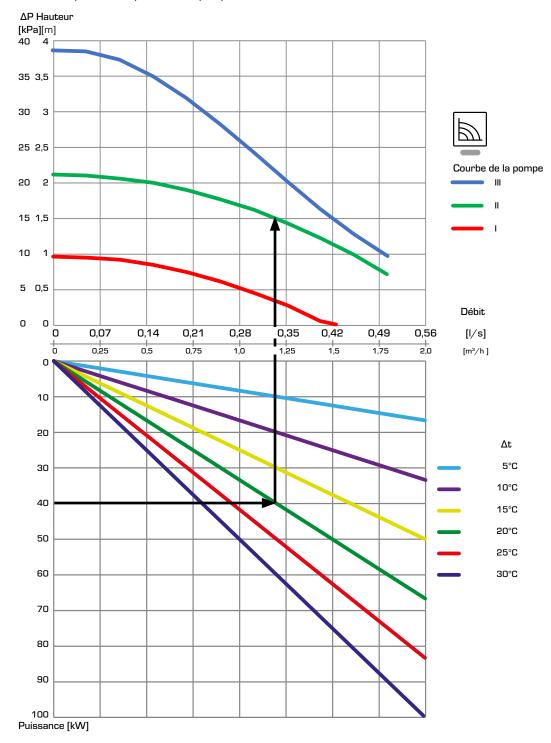
Art. N°	Référence	DN	Adaptateur deraccordement		sance* (maxi Δt)	Température d'ouverture	А	В	С	D	Poids [kg]
55005300	LTC341	25	G 1"	60	35	55 °C ± 5 °C	213	42	212	118	
55005400				50	30	60 °C ± 5 °C					4,4
55005500				45	25	65 °C ± 5 °C					

SÉRIE LTC361 Filetage intérieur avec pompe électronique de 6 m

Art. N°	Référence	DN	Adaptateur deraccordement		sance* (maxi Δt)	Température d'ouverture	А	В	С	D	Poids [kg]
55006000	LTC361	25	G 1"	90	35	55 °C ± 5 °C	213 42	40	212	118	4,4
55006100				80	30	60 °C ± 5 °C					
55006200				65	25	65 °C ± 5 °C		42	212		
55006300				50	20	70 °C ± 5 °C					
55006400	LTC361	32	G 11⁄4"	90	35	55 °C ± 5 °C		40	219	118	4,6
55006500				80	30	60 °C ± 5 °C					
55006600				65	25	65 °C ± 5 °C		42	219		
55006700				50	20	70 °C ± 5 °C					

SÉRIE LTC381 Filetage intérieur avec pompe électronique de 8 m

Art. N°	Référence	DN	Adaptateur deraccordement		sance* (maxi Δt)	Température d'ouverture	А	В	С	D	Poids [kg]
55006800	LTC381	40	G 1 ½"	110	35	55 °C ± 5 °C	225	42	218	118	4,6
55006900				95	30	60 °C ± 5 °C					
55005200				80	25	65 °C ± 5 °C					

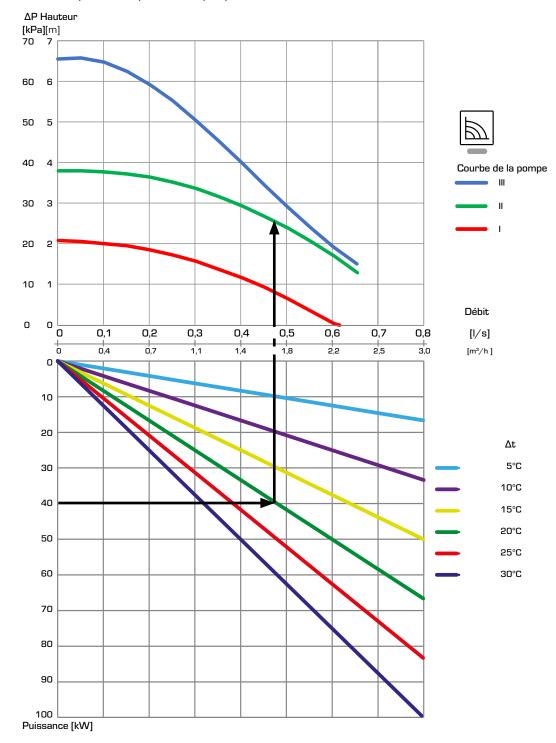

^{*} Les recommandations suivantes s'appliquent uniquement à ce produit.
Pour les besoins généraux du système, des restrictions peuvent survenir au niveau de la puissance de sortie possible (disponible Δp = 15 kPa).

DIMENSIONNEMENT

Exemple : Commencez par la puissance thermique de la chaudière (par ex. 40 kW) et déplacez-vous horizontalement vers la droite dans le diagramme jusqu'au Δt sélectionné (recommandé par le fournisseur de la chaudière), qui correspond à la différence de température entre le départ de la chaudière et le retour à la chaudière (par ex. $85^{\circ}\text{C} - 65^{\circ}\text{C} = 20^{\circ}\text{C}$).

Déplacez-vous verticalement vers le haut jusqu'aux courbes qui représentent la performance de l'unité de charge. Vérifiez que la courbe de la pompe prend en charge les chutes de pression supplémentaires dans les composants du système, à savoir les canalisations, la chaudière et le réservoir de stockage.

LTC341 - pression disponible de la pompe, vitesse constante

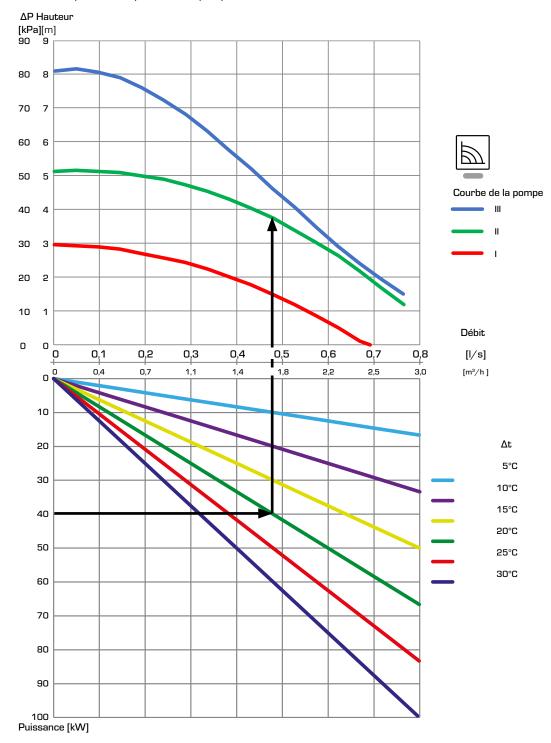


DIMENSIONNEMENT

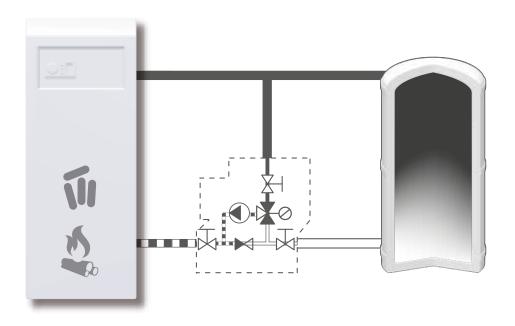
Exemple : Commencez par la puissance thermique de la chaudière (par ex. 40 kW) et déplacez-vous horizontalement vers la droite dans le diagramme jusqu'au Δt sélectionné (recommandé par le fournisseur de la chaudière), qui correspond à la différence de température entre le départ de la chaudière et le retour à la chaudière (par ex. $85^{\circ}\text{C} - 65^{\circ}\text{C} = 20^{\circ}\text{C}$).

Déplacez-vous verticalement vers le haut jusqu'aux courbes qui représentent la performance de l'unité de charge. Vérifiez que la courbe de la pompe prend en charge les chutes de pression supplémentaires dans les composants du système, à savoir les canalisations, la chaudière et le réservoir de stockage.

LTC361 - pression disponible de la pompe, vitesse constante



DIMENSIONNEMENT


Exemple: Commencez par la puissance thermique de la chaudière (par ex. 40 kW) et déplacez-vous horizontalement vers la droite dans le diagramme jusqu'au Δt sélectionné (recommandé par le fournisseur de la chaudière), qui correspond à la différence de température entre le départ de la chaudière et le retour à la chaudière (par ex. 85°C - 65°C = 20°C).

Déplacez-vous verticalement vers le haut jusqu'aux courbes qui représentent la performance de l'unité de charge. Vérifiez que la courbe de la pompe prend en charge les chutes de pression supplémentaires dans les composants du système, à savoir les canalisations, la chaudière et le réservoir de stockage.

LTC381 - pression disponible de la pompe, vitesse constante

EXEMPLE D'INSTALLATION

ENTRETIEN ET MAINTENANCE

L'unité de charge est munie de robinets de fermeture pour faciliter la maintenance ultérieure.

Dans des conditions normales, l'unité de charge ne nécessite aucune maintenance. Des thermostats sont cependant disponibles et faciles à remplacer si nécessaire.

OPTIONS

Thermostat 55 °C	Art. N° 57020200
Thermostat 60 °C	Art. N° 57020300
Thermostat 65 °C	Art. N° 57020800
Thermostat 70 °C	Art. N° 57020400

